3/6
Booleova algebra
Zákony pro logické operace:
|
A+B = B+A A.B = B.A |
|
|
A+B+C = A+(B+C)=(A+B)+C A.B.C=A.(B.C)=(A.B).C |
|
|
A.(B+C)=A.B+A.C A+(B.C)=(A+B).(A+C) |
|
|
![]() |
|
|
![]() |
|
|
A+1 = 1 A.0 = 0 |
|
|
A+0=A A.1=A |
|
|
A+A = A A.A = A A+A.B =A A.(A+B)=A ![]() |
A(1+B)=A.1=A A.A+A.B=A+A.B=A(1+B)=A.1=A |
|
![]() |
|
|
![]() |